

 IFIP TC6

http://virtualgoods.tu-ilmenau.de/2004/

 Reviewed Papers Virtual
Page
Numbers

 Session 1: Watermarking for Virtual Goods
1. StirMark and profiles: from high end up to preview scenarios

Andreas Lang, Jana Dittmann,
http://virtualgoods.tu-ilmenau.de/2004/virtual_goods_2004_LANG_DITTMANN.pdf

1-12

2. Synchronization of Video Watermarks for Oblivious Detection after Geometrical
Distortions
Uwe Wessely
http://virtualgoods.tu-ilmenau.de/2004/wmsync-VG04.pdf

13-23

3. Complexity Optimization of Digital Watermarking for Music-On-Demand Services
Martin Steinebach, Sascha Zmudzinski
http://virtualgoods.tu-ilmenau.de/2004/watermarking_music_on_demand_steinebach_vg2004.pdf

24-35

 Session 2: Culture and Business for Virtual Goods
4. On-line music distribution: a case study

Francis Rousseaux, Alain Bonardi, Romain Poncelet
http://virtualgoods.tu-ilmenau.de/2004/On-linemusicdistribution_a_case_study.pdf

36-46

5. Secure Music Content Standard - Content Protection with CodeMeter
Marcellus Buchheit, Rüdiger Kügler
http://virtualgoods.tu-ilmenau.de/2004/SecureMusicContentProtection_VG2004.pdf

47-58

6. Towards a Secondary Market for Virtual Media - A Theoretical Approach
Lutz Niehüser, Johannes Bräutigam
http://virtualgoods.tu-ilmenau.de/2004/SecondaryMarket.pdf

59-71

 Session 3: The Value of Virtual Goods
7. Modelling the eVerlage Payment Protocols

Uwe Petermann
http://virtualgoods.tu-ilmenau.de/2004/EVerlagePaymentProtocols.pdf

72-83

8. How to Pay in LicenseScript
Cheun Ngen Chong, Sandro Etalle, Pieter Hartel
http://virtualgoods.tu-ilmenau.de/2004/ceh04vgoods.pdf

84-90

9. Personalized Previews: An Alternative Concept of Virtual Goods Marketing
Patrick Aichroth, Stefan Puchta, Jens Hasselbach
http://virtualgoods.tu-ilmenau.de/2004/personalized_previews.pdf

91-100

 Session 4: Digital Protection and Digital Rights for Virtual Goods
10. Enabling Digital Content Protection on Super-Distribution Models

Carlos Serrão, Joaquim Marques
http://VirtualGoods.tu-ilmenau.de/2004/VG2004-EDCP-SD-OSDRM.pdf

101-112

11. Licensing Structured Data with Ease
Yee Wei Law, Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Ricardo Corin
http://VirtualGoods.tu-ilmenau.de/2004/law04licensing.pdf

113-124

12. Interoperability Challenges for DRM Systems
Andreas U. Schmidt, Omid Tafreschi, Ruben Wolf
http://VirtualGoods.tu-ilmenau.de/2004/Interoperability_Challenges_for_DRM_Systems.pdf

125-136

http://virtualgoods.tu-ilmenau.de/2004/
http://virtualgoods.tu-ilmenau.de/2004/virtual_goods_2004_LANG_DITTMANN.pdf
http://virtualgoods.tu-ilmenau.de/2004/wmsync-VG04.pdf
http://virtualgoods.tu-ilmenau.de/2004/watermarking_music_on_demand_steinebach_vg2004.pdf
http://virtualgoods.tu-ilmenau.de/2004/On-linemusicdistribution_a_case_study.pdf
http://virtualgoods.tu-ilmenau.de/2004/SecureMusicContentProtection_VG2004.pdf
http://virtualgoods.tu-ilmenau.de/2004/SecondaryMarket.pdf
http://virtualgoods.tu-ilmenau.de/2004/EVerlagePaymentProtocols.pdf
http://virtualgoods.tu-ilmenau.de/2004/ceh04vgoods.pdf
http://virtualgoods.tu-ilmenau.de/2004/personalized_previews.pdf
http://virtualgoods.tu-ilmenau.de/2004/VG2004-EDCP-SD-OSDRM.pdf
http://virtualgoods.tu-ilmenau.de/2004/law04licensing.pdf
http://virtualgoods.tu-ilmenau.de/2004/Interoperability_Challenges_for_DRM_Systems.pdf

How to Pay in LicenseScript

Cheun Ngen Chong1, Sandro Etalle1,2, and Pieter Hartel1

1University of Twente, P.O.Box 2100, 7500 AE Enschede
{corin,chong,etalle,pieter }@cs.utwente.nl

2Center Mathematics Computer Science (CWI), P.O.Box 94079, NL-1090 GB Amsterdam
Sandro.Etalle@cwi.nl

Abstract

Current DRM systems do not provide flexible payment methods, requiring the user to handle
the payment by hand. For instance, when the user needs to pay for watching a movie, she needs to
decide which available payment method is the most optimal and suitable. This is a rather cumber-
some process for the user that can be avoided by the specification ofpayment policies. A payment
policy automates the payment process of each content usage, choosing the best alternative among
the possible payment methods.

In this paper, we show how LicenseScript is able to model payment policies, allowing the user
to precisely specify how a payment of content usage should be performed.

Link : http://VirtualGoods.tu-ilmenau.de/2004/ceh04vgoods.pdf

1 Introduction

Most information, such as books, music, video, personal data and sensor readings is intended for a spe-
cific use. This specific use should conform to particular terms and conditions, which are often governed
by licenses. To describe a license, a specific language is needed. In this paper we use LicenseScript
[1], a language that is able to express conditions of use of dynamic and evolving data. LicenseScript
is based on multiset rewriting, which is able to capture thedynamicevolution of licenses, and logic
programming, which captures the static terms and conditions on a license.

Besides LicenseScript, other rights expression languages (RELs) have been proposed. Two XML-
based RELs are amongst the most popular: XrML [2] and ODRL [3]. Unfortunately, these languages
only focus on rights management description and specification. Thus, they do not handle payment meth-
ods flexibly. These RELs, for instance, merely facilitate the bank information and content provider’s
bank account specification (to where the content users may transfer the money.) In other words, the
user is not provided with other alternatives of payment methods.

On the other hand, we show in this paper how the flexible design of LicenseScript allows users to
specify easily payment policies. As Chong et al. [1] proposed, payment can be modelled in Licens-
eScript by awallet, which contains the user money. As an example, consider a piece of music that is
licensed on a pay-per-view basis. Everytime we play this music, we need to pay first. To do so, we look

1

http://VirtualGoods.tu-ilmenau.de/2004/ceh04vgoods.pdf

2 THE LICENSESCRIPT LANGUAGE

for our wallet, and make the payment transfer. This payment method is a very simple one; in fact, it
was intentionally oversimplified. Two deficiencies of Chong et al.’s model [1] are:

1. It is unrealistic: A user usually has many sources of money, for instance, the user’s real wal-
let, her bank account and probably also her savings account. Furthermore, the user may have
other special values such as money coupons orair miles. Each of these sources has different
characteristics. A user may like to use these special values in a different situation.

2. It is inflexible: The user does not have the opportunity to decide or choose how to perform the
payment.

In this paper we will consider an extension of the above model to address the above mentioned
deficiencies. In particular, to tackle the deficiency 1 we allow the existence of many wallets, each one
with different attributes. To solve the deficiency 2, we allow the user to specify apayment policythat
can precisely decide how to perform a payment.

2 The LicenseScript Language

In this section we briefly describe the LicenseScript language. We refer the interested reader to previous
work [1] for a more detailed treatment.

2.1 Preliminaries

As mentioned earlier, LicenseScript is based on multiset rewriting. By amultisetwe mean a set with
possibly repeated elements. For example,[a, b, b, c] is a multiset.

In LicenseScript, licenses are bound to terms that reside in multisets. For the specification of these
licenses, we use logic programming; the reader is thus assumed to be familiar with the terminology and
the basic results of the semantics of logic programs [4]. We also use Prolog notation: we use words that
start with uppercase (X, Y, ...) to denote variables, and lowercase (music piece, video track, expires, ...)
to denote constants. We work withqueries, that is sequences of atoms.

2.2 Licenses

A license contains two relevant items of information: (i)Content: a reference to the data that is being
licensed, and (ii)Clauses + Bindings: theconditions of useon that data.

A license is represented by a term of the formlic(content,∆, B) wherecontentis a unique iden-
tifier representing the data the license refers to,∆ is a set ofclauses, i.e., a Prolog program andB is
a set ofbindings, i.e., a set containing elements of the formname ≡ value. Intuitively, ∆ contains
queries that will answer, according to the conditions of use, whether a certain operation is applicable.
The bindingsB represent the state of the license, where the clauses∆ can access.

Example 1.

1. Playn times license. The following license allowsa to be played at most10 times (see Figure 1).

lic(a,∆, {played times = 10})

2

2 THE LICENSESCRIPT LANGUAGE 2.3 Rules

lic(a, ,B)

∆

∆

Content a

Clauses

{ canplay? }

Bindings B

{ played = 10 }

lic(a, ,B’)

∆

∆

Content a

Clauses

{ canplay? }

Bindings B’

{ played = 9 }

if canplay
play!

MULTISET

Figure 1: The transformation of licenselic(a,∆, B).

where∆ is

{canplay(B,B′) : −
get value(B, played times,N),
N > 0,

set value(B, played times,N − 1, B′).}

where primitiveget value(B,n, V) returns inV the value of bindingn according toB, and
primitive set value(B,n, m,B′) sets valuem in bindingn of B, into B′.

2. Play until expiration date license.The licenselic(a,∆, {expires ≡ 10/10/2003}) where∆ is

{canplay(B,B) : −today(D),
get value(B, expires, Exp), Exp > D.}

allows to playa until the given expiration day.

3. Pay-per-view license.The licenselic(a,∆, {cost per view ≡ 10$, provider ≡ “Records Inc′′})
where∆ is

{canplay(B,B,C, P) : −
get value(B, cost per view,C),
get value(B, provider, P).}

allows to playa, but each time returns the costC of the playing, along with information about
the providerP needed for the payment.

2.3 Rules

Licenses typically reside inside a device. The modelling of communication between devices and the
licenses is done by means ofrewrite rules. These rules can be thought as thefirmwareof the device;

3

3 PAYMENT

licenses may come and go from a device, but the rules are fixed into the device (however, rules can
be ‘updated’ securely once in a while). The syntax of rules we adopt is that ofmultiset rewriting. An
example for a rule is the following:

play(X) : lic(X, ∆, B) → lic(X, ∆, B′)
⇐ ∆ ` canplay(B,B′)

∆ ` canplay(B,B′) means that clauses∆ make querycanplay(B′, B′) be succesful. Intuitively,
this means that licenselic(X, ∆, B) can be played. Thus, the above rule can be applied to a license
lic(X, ∆, B), replacing it with another licenselic(X, ∆, B′) if condition∆ ` canplay(B,B′) holds.

3 Payment

In this section, we introduce our wallets representation in LicenseScript. Then we provide a simple
method to specify the payment policies. To elaborate these payment policies, we provide several viable
examples.

3.1 Wallets

Each money source, or “wallet”, is represented as a term of the formwallet(Γ, B), whereΓ are the
clauses (as in the licenses above) andB the bindings of the wallet. We will assume thatB at least will
always contain a bindingmoney≡ M , representing how much money the wallet has.

Example 2. Consider walletwallet(Γ, B) whereB = {type = bank account,money = 1500$, interest =
0.5%, bankcharges= 1$} andΓ contains clauses to load and transfer money:

canload(B,B′, A) : −
get value(B,m, M),
set value(B,m, M + A,B′).

cantransfer(B,B′, P, A) : −
get value(B,m, M),
get value(B, bankcharges, C),
C + A ≤ M,

set value(B,m, M − (A + C), B′),
transfer(P,A).

Here,A is the amount of money the user likes to load onto the wallet and the primitivetransfer(P,A)
models the money transfer to entityP of the amount of moneyA.

In the rest of this paper, we will assume that each wallet has a similar clausecantransfer.
In the multiset of LicenseScript, all the wallets of a user will be gathered in a special term, namely

the wallet manager, denotedwm(Ψ, L). Here,L is the list of wallets, whileΨ will contain clauses
that operate over the wallets. For example, a validwm(Ψ, L) is one whereL = [wallet(Γ, B)] as in
Example 2 andΨ contains clauses for managing wallets (e.g.addwalletandremovewallet1.)

1Because of space constraints we will not specify these clauses here.

4

3 PAYMENT 3.2 Payment Policies

3.2 Payment Policies

Now that we have the wallets and the wallet manager, we need to specify a payment policy that will de-
cide how to perform the payments. More specifically, we need aweightpredicatep(Wallet,Weight),
that assigns to each walletWallet a valueWeight (s.t. Weight is a real number in the{0, 1} in-
terval.) A wallet with greater weight assigned byp will be preferred for payment than a wallet with
smaller weight. Given the list of walletsL from wm(Ψ, L), we say that payment policyp selects wallet
wallet(Γ, B) for payment ifp(wallet(Γ, B),W) andW = max({Wi | w ∈ L ∧ p(w,Wi)}).

3.2.1 Implementing payment policies in LicenseScript

To implement the selection procedure of a wallet by a payment policy in LicenseScript, we will proceed
as follows: First, we will create a special term that will reside in the multiset,policy(Γ). In Γ we have
two clauses:

• First, the weight predicatep(Wallet,Weight) that assigns weightWeight to walletWallet.

• Second, clauseselect. Intuitively, select(L,C,W) will select walletW from L, the wallet with
maximum weight according top, that has enough money to payC:

select(L,C,W) : − map(L,L′),
sort(L′, L′′)
choose(L′′, C, W).

wheremap(L,L′) returnsL′ s.t. L′ = {(w,weight) | w ∈ L ∧ p(w,weight)} and clause
sort(L′, L′′) sorts listL′ in L′′: L′′ = [(w1, weight1), ..., (wn, weightn)] for n = card(L′) and
weighti ≥ weighti+1 for i = 1..n − 1. Bothmap andsort can easily be expressed in Prolog,
so we skip their implementations. Finally,choose(L,C,W) will select the first walletW in list
L that has enough money (inW ’s moneybinding) to payC:

choose([H|T], C, H) : −
H = wallet(, B),
get value(B,money,M),
M ≥ C.

choose([H|T], C, Y) : −
choose(T,C, Y).

Recall that we assume that bindingmoneyis always in the bindings.

3.2.2 Rules

Now we are ready to describe an example of a rule that checks the payment condition on a license, and
then performs the payment by using a policy.

5

3 PAYMENT 3.3 Examples

Consider the following rule:

play(X) : lic(X, ∆, B), policy(Ψ), wm(Γ, L) →
lic(X, ∆, B′), policy(Ψ), wm(Γ, L′)

⇐ ∆ ` canplay(B,B′, C, P), (1)

Ψ ` select(L,C,wallet(Θ, E)), (2)

Θ ` cantransfer(E,E′, P, C), (3)

Γ ` set value(L,wallet(Θ, E),
wallet(Θ, E′), L′). (4)

where∆ andB are as in Example 1.3. Thisplay rule first selects a licenselic(X, ∆, B), a policy
policy(Ψ) and the wallet managerwm(Γ, L). Execution of this rule will be carried out succesfully if
the above conditions (1)-(4) hold. First, it is checked that licenseX can indeed be played (1). Then, a
walletwallet(Θ, E) is chosen in (2), and then used to perform the transfer (3). The new wallet with the
updated money value is then saved inwm (4).

3.3 Examples

1. Chong’s policy.We first model the simplest policy of Chong et al. [1]: we just look for a wallet
with enough money, and perform the payment. Letp(Wallet,Weight) : −random(Weight)
whererandom(R) returns a random number between{0, 1} in R. Intuitively, this weight pred-
ication assignsanyweight to a wallet, thus modelling the free choice. Notice that, alternatively,
definingp(Wallet, c). with c ∈ {0, 1} would also have been possible.

2. Minimum bank charges.Consider now the following stronger requirement: we would like to
find the wallet withminimumbank charges (as in Example 2) to perform the payment. Suppose
bindingbankcharges≡ C is in B for walletwallet(Γ, B), andC > 0. We set

p(wallet(Γ, B),Weight) : −
get value(B, bank charges, C),

Weight =
1
C

.

Thus,p(Wallet,Weight) will set asWeight of wallet Wallet the inverse of the bank charges
of Wallet; The higher the bank charges are, the lower the weight thatp assigns.

3. Paying with loyalty points.Suppose we have wallets of three kinds:airmiles, moneycoupon, and
bankaccount, specified in thetypebinding as in Example 1. We would like to specify a payment
policy in which we want to choose, for payment, first wallets of kindairmiles. If no wallet of
that kind is possible to pay, we want to choosemoneycoupon. Otherwise, we want to choose

6

REFERENCES

bankaccount. A weight predicatep can be defined as follows:

p(wallet(Γ, B),Weight) : −
get value(B, type, Type),

Weight =


1 if Type = airmiles

0.5 if Type = moneycoupon

0 if Type = bankaccount

4 Conclusions & Future Work

In this paper we propose a technique to specify payment policies to optimise payment strategies for
content usage in LicenseScript [1]. We believe this technique blends smoothly with the LicenseScript
framework thanks to the flexibility of the LicenseScript design. In particular, since LicenseScript allows
the use of Prolog as description language for licenses, it allows us to write complex payment policies in
simple and short Prolog programs.

One way to extend our work would be to modify theselectclause of a policy, to return not onlyone
wallet but a set of wallets to perform a payment. This would allow us to address “expensive” payments
that can be splitted amongst several wallets. For example, we could specify a payment policy that first
uses all the “airmiles” wallets, then “moneycoupons” wallets and so on.

Another possible extension would be to specify aselection policy, that is a policy that selects the
most appropiate payment policy to perform the payment of a given operation. This selection policy
would help into selecting the right payment policy for each payment. For example, suppose we have
two payment policiesA andB in the multiset, and we want to pay for “watching movies” operations
according to policyA, and “listen to music” operations according to policyB.

References

[1] C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonker, and Y. W. Law. LicenseScript: A novel digital rights
language and its semantics. In K. Ng, C. Busch, and P. Nesi, editors,3rd International Conference on Web
Delivering of Music (WEDELMUSIC), pages 122–129, Los Alamitos, California, United States, September
2003. IEEE Computer Society Press.1, 2, 6, 7

[2] H. Guo. Digital rights management (DRM) using XrML. InT-110.501 Seminar on Network Security 2001,
page Poster paper 4, 2001.1

[3] R. Iannella. Open digital rights management. InWorld Wide Web Consortium (W3C) DRM Workshop, page
Position paper 23, January 2001. http://www.w3.org/2000/12/drm-ws/pp/.1

[4] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation – Artificial Intelligence. Springer-
Verlag, Berlin, 1987. Second edition.2

7

	VirtualGoodsReviewed.pdf
	Reviewed Papers
	
	Virtual�Page Numbers

	Session 1: Watermarking for Virtual Goods
	StirMark and profiles: from high end up to preview scenarios
	Synchronization of Video Watermarks for Oblivious Detection after Geometrical Distortions
	Complexity Optimization of Digital Watermarking for Music-On-Demand Services
	Session 2: Culture and Business for Virtual Goods
	On-line music distribution: a case study
	Secure Music Content Standard - Content Protection with CodeMeter
	Towards a Secondary Market for Virtual Media - A Theoretical Approach
	http://virtualgoods.tu-ilmenau.de/2004/SecondaryMarket.pdf
	Session 3: The Value of Virtual Goods
	Modelling the eVerlage Payment Protocols
	Uwe Petermann �http://virtualgoods.tu-ilmenau.de/2004/EVerlagePaymentProtocols.pdf
	How to Pay in LicenseScript
	Cheun Ngen Chong, Sandro Etalle, Pieter Hartel
	http://virtualgoods.tu-ilmenau.de/2004/ceh04vgoods.pdf
	Personalized Previews: An Alternative Concept of Virtual Goods Marketing
	Patrick Aichroth, Stefan Puchta, Jens Hasselbach
	http://virtualgoods.tu-ilmenau.de/2004/personalized_previews.pdf
	Session 4: Digital Protection and Digital Rights for Virtual Goods
	Enabling Digital Content Protection on Super-Distribution Models
	Carlos Serrão, Joaquim Marques
	http://VirtualGoods.tu-ilmenau.de/2004/VG2004-EDCP-SD-OSDRM.pdf
	Licensing Structured Data with Ease
	Yee Wei Law, Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Ricardo Corin
	http://VirtualGoods.tu-ilmenau.de/2004/law04licensing.pdf
	Interoperability Challenges for DRM Systems
	Andreas U. Schmidt, Omid Tafreschi, Ruben Wolf
	http://VirtualGoods.tu-ilmenau.de/2004/Interoperability_Challenges_for_DRM_Systems.pdf

	Introduction
	The LicenseScript Language
	Preliminaries
	Licenses
	Rules

	Payment
	Wallets
	Payment Policies
	Implementing payment policies in LicenseScript
	Rules

	Examples

	Conclusions & Future Work

