

 IFIP TC6

http://virtualgoods.tu-ilmenau.de/2003/

 Reviewed Papers Virtual
Page

 Session 1: Watermarking for Virtual Goods
1. A unified digital watermarking interface for eCommerce scenarios

Stefan Thiemert, Martin Steinebach, Jana Dittmann, Andreas Lang
http://virtualgoods.tu-ilmenau.de/2003/watermarking_interface.pdf

1

2. Image Watermarking for Semi-fingerprinting
Han Ho Lee, J. S. Lee, N. Y. Lee, J. W. Kim
http://virtualgoods.tu-ilmenau.de/2003/ImageWatermarkingforSemi-fingerprinting.pdf

10

3. Watermarking of Analog and Compressed Video
Uwe Wessely, Stefan Eichner, Dirk Albrecht
http://virtualgoods.tu-ilmenau.de/2003/videowatermarking.pdf

20

 Session 2: Contracts for Virtual Goods
4. An Application Programming Interface for the Electronic Transmission of Prescriptions

D. Mundy, D. W. Chadwick, E. Ball
http://virtualgoods.tu-ilmenau.de/2003/EPPAPI.pdf

27

5. Towards a Conceptual Framework for Digital Contract Composition and Fulfilment
Susanne Guth, Gustaf Neumann, Mark Strembeck
http://virtualgoods.tu-ilmenau.de/2003/toward_contract_frmwrk.pdf

39

6. Electronic Contracting in cross-media environments – a media theory for the description
of contracting processes
Daniel Burgwinkel
http://virtualgoods.tu-ilmenau.de/2003/econtractingmedia.pdf

51

 Session 3: The Value of Virtual Goods
7. A decentralized, probabilistic money system for P2P network communities

Herwig Unger, Thomas Böhme
http://virtualgoods.tu-ilmenau.de/2003/money.pdf

60

8. Incentive Management for Virtual Goods – About Copyright and Creative Production in
the Digital Domain
Patrick Aichroth, Jens Hasselbach
http://virtualgoods.tu-ilmenau.de/2003/incentive_management.pdf

70

9. Increasing Consumer Value Through Technology for Virtual Music
Stephan Baumann, Oliver Hummel
http://virtualgoods.tu-ilmenau.de/2003/consumervalue.pdf

82

 Session 4: Digital Protection and Digital Rights for Virtual Goods
10. Digital Battery – A Portable System to Gather Statistical Utilization Information for Digital

Media without Compromising Consumer Anonymity
Timothy Budd
http://virtualgoods.tu-ilmenau.de/2003/DigitalBattery.pdf

92

11. LicenseScript: A Novel Digital Rights Language
Cheun Ngen Chong, Ricardo Corin, Sandro Etalle, Pieter Hartel, Yee Wei Law
http://virtualgoods.tu-ilmenau.de/2003/licensescript.pdf

104

12. The Benefits and Challenges of Providing Content Protection in Peer-to-Peer Systems
Paul Judge, Mostafa Ammar
http://virtualgoods.tu-ilmenau.de/2003/BenefitsAndChallengesOfP2PContentProtection.pdf

116

http://virtualgoods.tu-ilmenau.de/2003/
http://virtualgoods.tu-ilmenau.de/2003/watermarking_interface.pdf
http://virtualgoods.tu-ilmenau.de/2003/ImageWatermarkingforSemi-fingerprinting.pdf
http://virtualgoods.tu-ilmenau.de/2003/videowatermarking.pdf
http://virtualgoods.tu-ilmenau.de/2003/EPPAPI.pdf
http://virtualgoods.tu-ilmenau.de/2003/toward_contract_frmwrk.pdf
http://virtualgoods.tu-ilmenau.de/2003/econtractingmedia.pdf
http://virtualgoods.tu-ilmenau.de/2003/money.pdf
http://virtualgoods.tu-ilmenau.de/2003/incentive_management.pdf
http://virtualgoods.tu-ilmenau.de/2003/consumervalue.pdf
http://virtualgoods.tu-ilmenau.de/2003/DigitalBattery.pdf
http://virtualgoods.tu-ilmenau.de/2003/licensescript.pdf
http://virtualgoods.tu-ilmenau.de/2003/BenefitsAndChallengesOfP2PContentProtection.pdf

LicenseScript: A Novel Digital Rights Language

Cheun Ngen Chong, Ricardo Corin, Sandro Etalle, Pieter Hartel, and Yee Wei Law

University of Twente
The Netherlands

{chong,corin,etalle,pieter,ywlaw}@cs.utwente.nl

URL Link - http://virtualgoods.tu-ilmenau.de/2003/licensescript.pdf

Abstract

We propose LicenseScript as a new multi-set rewriting/logic based language for expressing dynamic con-
ditions of use of digital assets such as music, video or private data. LicenseScript differs from the other DRM
languages in that it caters for the intentional but legal manipulation of data. We believe this feature is the answer
to providing the flexibility needed to support emerging usage paradigms of digital data.

1 Introduction
Most information, such as books, music, video, personal data and sensor readings (we generalize this information
as data), is intended for a specific use. This specific use should conform to particular terms and conditions, which
are often governed by licenses. To describe a license, a specific language is needed. In fact, the last few years have
witnessed a proliferation of Digital Rights Languages (DRL). These are usually based on XML, e.g. XrML [7]
(www.xrml.org) and ODRL [8] (www.odrl.net).

It is now widely acknowledged that the above-mentioned XML-based DRLs have some important shortcom-
ings: (1) the syntax is complicated and obscure when the conditions of use become complex, (2) these languages
lack a formal semantics [5, 11]; the meaning of licenses relies heavily on the human interpretation, and (3) the
language cannot express many useful copyright laws [10].

Gunter et al [5] overcome some of the drawbacks by introducing an abstract model and language with a
corresponding formal semantics. Pucella and Weissman [11] follow up Gunter et al’s effort with more rigour.
They reason about the licenses and the user’s actions with respect to the licenses; this is done by means of a
temporal deontic logic.

However, none of the DRL introduced so far are flexible enough to accommodate the sophisticated conditions
of use that are needed for real use. Consider, for instance, the following two scenarios:

DJs Nowadays, anyone can compose, edit, and distribute music and videos. In fact, the success that DJs are
having in the media world demonstrates that there is a clear need for a system that allows copyrighted
music to be lawfully clipped, mixed, edited, and later be played in public and sold on the market.

Games Multiplayer network games are poised to become a multi million $ industry. For instance, the massively
multiplayer online role-playing games (MMORPG) industry is booming in Korea: In 2002 the revenues
created by MMORPG reached approximately USD 1.76 billions (Press Release dated 03 Feb 2003, by
Global Information Inc. www.gii.co.jp). An interesting aspect of these games is that gamers may
create and use their own data (e.g. characters, virtual belongings, etc.) within the game. Trading of virtual
characters is already reality, leading to a situation in which characters belonging to different owners are

1

integral part of a game, the rights of which belong to a third party. There is a strong need for a DRL
that allows a gamer to create, share, edit and re-sell digital characters, and that takes care of the lawful
integration of digital goods belonging to different owners.

The scenarios above require a licensing language that is capable of capturing the evolution of data and the
corresponding licenses. Additionally, the licensing language should be able to capture the intention of copyright
laws, such as: (1) Fair use (reproduction in copies for purposes of education, and critiques, etc.), (2) Exemption
of Public Display (public display and performance of copyrighted content), (4) Ephemeral Recordings (for local
transmissions, security or archival preservation), etc. These have become one of the main requirements of DRL
yet the scope of the current DRLs is limited to rights expression [10].

Licenses should prevent unauthorised used, but at the same time should provide a flexible user-friendly tool for
accessing content. For instance, a user who rightfully downloads a piece of music on her laptop may legitimately
expect to be able to play it in the car as well, or to let her friends listen to it. Therefore, licenses should be
bound to an authorized domain, rather than to a person or to a device. The concept of authorized domain was
introduced by the DVB consortium (www.dvb.org), and is discussed in detail by Van den Heuvel et al. [13].
State-of-the-art languages do not address this issue.

In this paper, we propose LicenseScript, a language that is able to express conditions of use of dynamic and
evolving data in authorized domains. LicenseScript is based on (1) multiset rewriting, which is able to capture the
dynamic evolution of licenses, (2) logic programming, which captures the static terms and conditions on a licence,
and (3) a judicious choice of the interfacing mechanism between the static and dynamic domains. LicenseScript
makes it possible to express a multitude of sophisticated usage patterns precisely and clearly. The formal basis of
LicenseScript (Multiset rewriting and logic programming) provides for a concise and explicit formal semantics.

The organization of the remainder of the paper is as follows: Section 2 explains the LicenseScript language,
and the formal basis. Section 3 demonstrates some examples for the DJ system. Section 4 elaborates the related
work of rights languages. Section 5 concludes the paper and discusses future work. In the Appendix, we compare
our system to that of Pucella et al. [11], by showing how a central example of [11] can be rendered in the
LicenseScript.

2 Preliminaries
As mentioned earlier, LicenseScript is based on multiset rewriting. Furthermore, we also use logic programming
for the specification of licenses; the reader is thus assumed to be familiar with the terminology and the basic
results of the semantics of logic programs [1, 9]. In particular, we borrow the concept of SLD-resolution: we
write P `SLD Q when there is a successful SLD-derivation for goal (or query) Q in program P . This basically
means that the execution of the query Q in the program P yields to success.

Also, since terms in the multiset may contain variables, we need to fix the notation: we use words that start
with uppercase (X ,Y ,...) to denote variables, and lowercase (music piece, video track, expires, ...) to denote
constants. We also use the typewriter font to denote Prolog code.

2.1 Licenses
A license defines the terms and conditions of use for music, videos etc. Therefore, a license contains at least two
relevant items of information: (i) a reference to the data that is being licensed, and (ii) the conditions of use on
that data.

In our formalism, a license is represented by a term of the form lic(content, ∆, B) (see also Figure 1), where:

• content is a unique identifier representing the data the license refers to.

• ∆ is a set of clauses, i.e., a Prolog program. This program defines when certain operations (like play) are
allowed.

2

Multiset

Old License

New License

Rules

Clauses

Clauses

Content

Content

Bindings

Bindings

Figure 1: The transformation of licenses with content and bindings in a multiset caused by rules.

• B is a set of bindings, i.e., a set containing elements of the form name ≡ value. For instance {expires ≡
10/10/2003} is a bindings set.

Bindings are needed to have a flexible way of storing counters and modifiable data. A license could be
regarded as a database in which ∆ is the intensional part, while B is the extensional one.

In order to interface licenses with the external world, we have to define an interface, i.e., a set of reserved
calls that form the “API” of the license. The precise definition of this interface is beyond the scope of this paper.
However, in the sequel, we use one particular call (from now reserved) called canplay(·); this term is used to
indicate when a license allows a given piece of music to be played: if the query canplay(B,B’) succeeds in
the program ∆, this means that the license lic(a, ∆, B) allows the piece a to be played. Notice that we passed
the set of bindings B as an argument to the query. As output we get B ′, the new set of bindings that hold after
the operation has been carried out.

Example 1

1. The license lic(mus, {canplay(X, X) : − true.}, {}) allows mus to be played.

2. The license lic(mus, {}, {}) does not allow any operation on mus.

3. The license

lic(a, ∆, {expires≡ 10/10/2003})

where ∆ is

{canplay(B, B) : − today(D),

get value(B, expires, Exdate), Exdate> D.}

allows to play a until the given expiration day.

get value(B, n, V) is a primitive call that reports in V the value of the name n according to the set of bindings
B. To further clarify how this last license actually works, we need to explain the role of the domain: notice that
in the previous example we refer to the call today(D) that is not defined anywhere. today(D) should be also
regarded as a primitive call, which binds the variable D to the current system date. In the remainder, we gather all
such primitives in a special program that we call the domain, denoted D. Notice that there can be many domains
in which licenses reside, and probably a domain will have different meanings for the primitives than another
domain.

3

Changing the Bindings There are situations in which the “execution” of a license should be followed by a
modification on the set of bindings. Consider for instance a license that allows to play a piece of music for a
given number of times: every time a play action is carried out, a counter should be increased. This is done by
means of the primitive set value(Oldbindings, name, value, Newbindings). This primitive allows a name
from a binding to be associated with a new value, which we use to support the evolution of licences. Consider,
for instance, the following license:

lic(a, ∆, {played times ≡ 3}) (1)

where ∆ consists of the following clause:

canplay(B, B′) : − get value(B, played times, R), R < 10, set value(B, played times, R+ 1, B′).

Here, we first extract the value of variable played times into local variable R. Then, if we have not ex-
hausted the possible playing times allowed by the license (in this case, 10), we proceed to increase the value of
played times from bindings B to R + 1, into new output bindings set B′.

2.2 The Rules
Licenses typically reside inside a device. The communication between this device and the licenses is done by
means of rewrite rules. Their syntax is that of multiset rewriting (we adopt Gamma notation [3, 2]), where rules
are of the form:

name(args) : lms → rms ⇐ cond

Here name(args) is a Prolog atom representing the license name and arguments (we call this atom rule
label); lms represents the original (left) multiset, which is to be replaced with (right) multiset rms; cond refers
to the conditions of applying the rule. A condition is a list of queries to the clauses of a license, of the form
∆ ` φ. We write ∆ ` φ whenever query φ succeeds in program ∆ (we consider the primitives of the mentioned
domain D also available at run time). An example for a rule is the following:

play(X) : lic(X, ∆, B) → lic(X, ∆, B′)

⇐ ∆ ` canplay(B, B′)

2.3 LicenseScript Execution Model
In the sequel we say that a term t matches with a term s if there exists a substitution σ, Dom(σ) = V ar(t) such
that tσ = s. σ is called the matching substitution. It is clear that if a term matches with another one there exists
a unique matching substitution.

As we already mentioned, licenses are represented by terms of the form lic(content, ∆, B). For the sake of
exposure, we assume that all available licenses are stored in a multiset MS. Intuitively, the whole process of
execution of actions in LicenseScript, proceeds as follows:

1. The environment (e.g., the user) communicates to a device (e.g., a TV set) the desire of execution of a given
command. This command is called a request action, and contains information about what action wants to
be executed, and also over what content the action should be applied to. Request actions are represented
by Prolog atoms. For example, a possible action is play(music piece).

2. The device that receives the action request, checks if there is a rule whose label matches with the requested
action.

For instance, action play(a) matches with the head of the rule play(X) : lic(X, ∆, B) → lic(X, ∆, B ′) ⇐
∆ ` canplay(B, B′). The matching substitution in this case is σ = {X/a}.

4

In principle, there could be more than one label matching the request action. However, it is very easy to
avoid this situation, so we assume that at most one label will be able to match the request.

If there are no labels matching the request, the request fails.

3. Suppose that the rule rule(arg) : lms → rms ⇐ cond matches with the request atom, with matching
substitution σ1. We have to check whether there exists one (or more) license(s) in MS that can be matched
with the lhs of the rule.

If there exists a sub-multiset lics of MS and a substitution σ2 such that:

(a) lmsσ1σ2 = lics, and

(b) condσ1σ2 succeeds with computed answer σ3.

Now, the requested action is authorized and can be carried out. Recall that σ3 carries the new bindings.
(Actually, there can be some nondeterminism here, since there could be different sub-multisets lics of MS
satisfying the above conditions and even more than one σ2. This corresponds to the possible situation in
which the user possesses more than one license that allows her to effectuate the desired action. In this case,
we can assume that the system asks the user which license should be used. How this will actually take
place is outside of the scope of this paper: here we focus on the core language, and leave aside issues such
as the user interface.)

4. The final step involves updating the multiset: this is done by replacing lics in MS with rmsσ1σ2σ3.

Example 2 Let MS be the multiset containing the following licenses: {lic(music, Γ, C), lic(video, Σ, D)}where
C = {played times ≡ 2} and D = {played times ≡ 10}, and

Γ = Σ =

{canplay(B, B′) : −get value(B, played times, N), N < 10, set value(B, played times, N+ 1, B′)}

Now, suppose the environment requests the action play(music). This will match rule play(X), giving matching
σ1 = {X/music}.

The next step involves for looking in MS for possible occurrences of lic(music, Γ, B). The only possible
match is, of course, lic(music, Γ, C). This gives us matching σ2 = {∆/Γ, B/C}.

Now, condition ∆ ` canplay(C, B′) has to be evaluated. Since variable played times is less than 10 in
C, the canplay(C, B′) succeeds in the Prolog program ∆, hence the condition is satisfied. We get the computed
answer substitution σ3 = {B′/{played times ≡ 3}}.

Finally, the update of MS is carried out. License lic(mus, Γ, C) is removed from MS, and substitution with
lic(mus, Γ, C ′), where C ′ = {played times ≡ 3}.

Example 3 Consider the same multiset and rules of the previous example. Suppose now request action play(video)
is issued. This action, even though has a matching rule and a matching license in the multiset, cannot be
carried out completely. This is so since, in the unique matched license, that is, lic(video, Σ, D) condition
∆ ` canplay(B, B′) does not hold.

3 DJ Examples
In this section we provide some additional examples, showing the flexibility of LicenseScript.

5

3.1 Authorized Domain
The idea behind authorized domains is that a license should not be bound to a specific user or to a specific device
(as it happens with nowadays protection mechanisms), but to a domain. A typical domain would be the set
of Consumer-Electronic (CE) devices belonging to a household. The objective is that of permitting a seamless
access to virtual goods within a domain. Philips Research Center, in The Netherlands is currently implementing
the concept of authorized domain by using public key infrastructure, i.e. hierarchy of certificates, certification
authorities etc.

In this section we exemplify how authorized domains could be implemented in LicenseScript. To this end,
we use a unique identification to represent an authorized domain. This unique identification could be digital
certificate of a system (or serial number of a device, if the domain is only a single device).

Furthermore, we introduce two license bindings, in domain and to domain in the license: in domain is
used to represent the domain where the license is currently valid, to domain represents the domain to which the
license is allowed to move.

For example, to state that the play operation is only valid in the domain cert, we can use the following
license:

lic(mus, ∆, {in domain ≡ cert})

where

∆ = {canedit(B, B′) : −identify(Id1), get value(B, in domain, Id2), Id1 = Id2.}

The rule for the edit operation is then:

edit(Mus) : lic(Mus, ∆, B) → lic(Mus, ∆, B′)

⇐ ∆ ` canedit(B, B′)

The subquery identify(Id1) is a primitive in domain D, which is used to model the identification of the
current domain (i.e., to retrieve the identity of the current domain). This license checks that identification of the
current authorized domain must be equal to the identification of the authorized domain stated in the license.

Changing the Domain The edit rule does not change the authorized domain. To illustrate the influence of
changing the authorized domain, we use another operation in the DJ system, move operation. The license to
move a music track from one domain to another domain may look like this:

lic(mus, ∆, {in domain ≡ cert1, to domain ≡ cert2})

This license signifies that the license is allowed to move from authorized domain with identification value of
cert1 to authorized domain with cert2. The clauses ∆ of the license can be written as follows:

canmove(B, B′) : − identify(Id1), get value(B, to domain, Id2), Id1 = Id2,

set value(B, in domain, Id2, B
′), set value(B, to domain, Id1, B

′).

When the license is moved to authorized domain cert2, the primitive atom of the authorized domain D,
identify(Id1) retrieves the identification value of the current authorized domain (where the license is moved
to). A check is made to see whether the license is allowed to move to this authorized domain, akin to clause of
canedit(B, B′) shown above. If the check succeeds, the values of the bindings in domain and to domain are
exchanged. Thereby indicating the license is allowed to move back to the original authorized domain.

Therefore, the rule for the move operation can be built as follows:

move(Mus) : lic(Mus, ∆, B) → lic(Mus, ∆, B′)

⇐ ∆ ` canmove(B, B′)

6

3.2 Payment
We now show how various forms of payment can be modelled in LicenseScript. We assume that a license
can carries balance represented by the binding wallet = x. We postulate the existence of two new primitives,
add to balance(W, M) to increase the balance. Before attempting to perform any other operations on the music
track, the Wallet must be loaded. The relevant clause of the license for this purpose would be:

canload(B, B′) : − add to balance(M), get value(B, wallet, W), W′ is W + M,

set value(B, wallet, W′, B′).

The rule for load operation may be written as follows:

load(Mus) : lic(Mus, ∆, B) → lic(Mus, ∆, B′)

⇐ ∆ ` canload(M, B, B′)

There are at least three common alternatives of payment: before-use, after-use and per-use [5]. The rest of
this section takes the play operation as our illustration of the aforementioned payment methods.

The rule for the pay operation can be written as follows:

pay(Mus) : lic(Mus, ∆, B) → lic(Mus, ∆, B′)

⇐ ∆ ` dopay(B, B′)

The license bindings should include:

{wallet ≡ m, owner ≡ cert1, rate ≡ x, provider≡ cert2, paid ≡ false, used≡ false}

Here, rate designates the rate of the payment, while provider represents the content provider to whom the
money must be transferred; paid is a boolean indicating whether the payment has already taken place; similarly,
used is used to indicate if the license has been used. The clause for pay-before-use is:

dopay(B, B′) : − get value(B, used, Used), Used = false, get value(B, paid, Paid),

Paid = false, get value(B, wallet, Balance), get value(B, rate, Rate),

get value(B, provider, Pro), Balance ≥ Rate, N is Balance− Rate,

transfers(Pro, Rate), set value(B, wallet, N, B′),

set value(B, paid, true, B′).

Here the value of rate is deducted from the balance; the binding of paid is set to true to indicate the
payment has been made; the primitive transfers(Pro, Rate) models the transfer of money to the provider.

The license clause for the play operation can be constructed as follows:

canplay(B, B′) : − get value(B, paid, Paid), Paid = true, get value(B, used, Used),

Used = false, set value(B, used, true, B′).

We may introduce two types of pay-after-use: (1) bulk payment, and (2) payment for the used period. The
bulk payment license contains the similar license bindings of pay-before-use license.

The clause of the license for the bulk payment can be written as follows:

dopay(B, B′) : − get value(B, paid, Paid), Paid = false, get value(B, used, Used),

Used = true, get value(B, wallet, Balance), get value(B, rate, Rate),

get value(B, provider, Pro), Balance ≥ Rate, N is Balance− Rate,

transfers(Pro, Rate), set value(B, wallet, N, B′),

set value(B, paid, true, B′).

7

where the binding used is checked if the license is used.
Notice the difference between the bulk payment after use and pay before use is that the binding used must be

true for bulk payment after use, otherwise for pay before use.
For the second pay-after-use method (just pay for the period of use), the license bindings include:

{wallet ≡ m, owner ≡ cert1, rate ≡ x, provider ≡ cert2, paid ≡ false, used ≡ 0}

The novelty here is that used is now a positive integer that records the length of time the license has been
used. The clauses for the corresponding license is:

dopay(B, B′) : − get value(B, paid, Paid), Paid = false, get value(B, used, Used),

Used > 0, get value(B, wallet, Balance), get value(B, rate, Rate),

get value(B, provider, Pro), N is Used ∗ Rate,

Balance ≥ Rate, M is Balance− N, transfers(Pro, N),

set value(B, wallet, M, B′), set value(B, paid, true, B′).

To show how the play operation acquires pay after use (for certain used period), we build the license clause
as follows:

canplay(B, B′) : − get value(B, paid, Paid), Paid = false, get value(B, used, Used),

Used = 0, logs(U), set value(B, used, U, B′).

where the primitive logs(U) models the system logging the length of the time the DJ has played (say, by stream-
ing) the music track.

The license bindings for pay-per-use may be listed as follows:

{wallet ≡ m, owner ≡ cert1, rate ≡ x, provider≡ cert2}

where the binding rate ≡ x designates the rate of the payment, while provider ≡ cert2 represents the
content provider who provides the music track, and to whom the money transfers.

The clause for pay-per-use license is similar to license clause for pay before use. The difference between pay-
before-use and pay-per-use is that there is no payment indicator (the binding paid) in the pay-per-use license:

canplay(B, B′) : − get value(B, wallet, Balance), get value(B, rate, Rate),

get value(B, provider, Pro), Balance ≥ Rate, N is Balance− Rate,

transfers(Pro, Rate), set value(B, wallet, N, B′).

3.3 Clipping
In our system, a DJ who has purchased a music track from a content provider requires some comments from other
DJs. She can clip the license and the content, and then she may send the clipped results to other DJs as a previews
or recommendations.

The license looks like this:

lic(mus, ∆, {begin≡ 0, end ≡ mus length})

Here the bindings begin and end indicate the head and tail of the music track. The license clause for clip
operation may be written as follows:

canclip(Begin, End,B, B′) : − set value(B, begin, Begin, B′), set value(B, end, End, B′).

8

The corresponding rule for clip operation is then:

clip(Begin, End, Mus) : lic(Mus, ∆, B) → lic(Mus, ∆, B), lic(Mus, ∆, B ′)

⇐ ∆ ` canclip(Begin, End, B, B′)

As can be seen from the above rule, a new license is generated referring to the clipped music track. The clipped
license can be sent to other DJs to achieve the purpose of fair use. We investigate the copyright acts (e.g. fair use)
and LicenseScript as one of our viable future work.

4 Related Work
In this section, we briefly discuss the related work. We elaborate the digital rights language proposed by Gunter
et al. and Pucella and Weissman.

Gunter et al. [5] from InterTrust Technologies Corporation and Pucella and Weissman [11] from Cornell
University have presented two logics for licenses. Gunter et al. by borrowing techniques from programming
semantics [6], have developed a model and a language for describing licenses. Their logic consists of a domain
of sequences of events called realities. In their logic, an event e ∈ Event is modelled as a pair of time t ∈ T ime
and action a ∈ Action:

e ::= t : a

Two kinds of action have been envisaged:

a ::= render[w, d] | pay[x]

Here w ∈ Work denotes the copyrighted work (content); d ∈ Device represents a device; and x is a decimal
number, representing the amount of payment. render[w, d] denotes the action of rendering the work w on device
d. pay[x], as the name implies, symbolizes the action of paying an amount of x for using the work. Therefore,
the event t : render[w, d] implies that the work w is rendered on device d at time t. Only one event is allowed at
a time. A finite set of events is embodied in a reality, r ∈ Reality. A license, l ∈ License, is a set of realities.
Most licenses consist of infinitely many realities in order to allow the use of a work at one or more of infinitely
many times during some period.

Using the proposed model, Gunter et al. have formularized several standard license types, which they call sim-
ple licenses. The simple licenses are “Up Front” (pay before use), “Flat Rate”(pay after use) and “Per Use”(pay
per use). Simple licenses can be used as the building blocks of more complex licenses.

Pucella and Weissman follow up Gunter et al.’s effort with more rigour [11]. The following summarizes the
core concepts:

• There are 4 standard domains: (1) N for license names (every license is assigned a name), (2) W for works
(copyrighted works), (3) D for devices (for rendering works), (4) A for atomic actions (which is a union of
the render and the pay action).

• There are 3 syntactic categories: (1) action expression, (2) license, (3) formula.

• An action expression α is composed of action-name pairs (i.e. pairs of (a, n) where a ∈ A and n ∈ N).
Action expressions are either permitted (Pα) or obligatory (Oα). (This distinction is what makes their
logic more accessible and complete than Gunter et al.’s.)

• A license l is an action sequence (not to be confused with an action expression).

• A formula is made up of n : l terms and α terms. n : l means the action sequence l is valid for the license
labelled n.

9

• A run r associates a time t with the licenses issued at that time and the actions performed by the client at
that time. At most, one action per time per license can occur.

• An interpretation π is a tuple (P, O) where P is a permission assignment and O is an obligation assignment.
Simply speaking, if (a, n) ∈ P (t), then action a is permitted by license n at time t. Similar intuition applies
to O(t).

• The consistency notion says that if an interpretation π enforces all the permissions and obligations required
by the licenses issued by a run r, then π is consistent with r. In other words, checking for license violation
in a run boils down to checking whether the prevailing interpretation is consistent with the run.

LicenseScript uses multiset rewriting which is more expressive than the denotational semantics of Gunter
et al. LicenseScript is also readily subject to logical parallelism. Pucella et al.’s logic is only a starting point,
with the assumption of one client and one provider and therefore definitely does not cater for concurrency, like
LicenseScript does. To state the obvious, Pucella et al. also have not yet taken into account the malleability of
licenses and contents (e.g. as a result of “clipping” and “mixing”), and the concepts of authorized domains.

5 Conclusions and Future Work
We propose a novel rights language based on multiset rewriting and logic programming: LicenseScript. We
present the design of the language using a scenario that represents an elaborate pattern of use of content. In this
scenario, a DJ edits, clips and mixes music such that the terms and conditions on the music used and produced
by the DJ are satisfied.

LicenseScript differs from other DRLs in that it has an explicit static and dynamic part. The terms and
conditions on content form the static part. These terms and conditions usually derive from legal, regulatory
and business rules, and are therefore appropriately expressed using Prolog clauses [12]. A license is used in a
changing context and must therefore have the ability to evolve. The dynamics are represented by interpreting a
license as an element of a multi-set to which multi-set rewrite rules are applied. These rules represent the way
in which the context (devices and systems) act upon licences. The dual nature of a license (static vs dynamic)
is thus represented by a two-tier structure of LicenseScript. The two levels are linked by a set of bindings that
represents the current state of the evolution.

The LicenseScript language is an abstract modelling language. We are now implementing an interpreter that
is able to comprehend the language and acts as a modeller and verifier. The interpreter acts a logical decision
engine, and allow us to experiment with the language, and apply it to practical cases.

Eventually, we aim at a lightweight, platform-independent interpreter that could be deployed on embedded
devices. At the same time, we are investigating the trusted computing platform (www.trustedpc.org) that
built in IBM T30 laptops. We plan to implement the interpreter on such platform, which provides the solution of
tamper-resistance at end-user platform.

Future work is threefold. Firstly, we will endow the language with a trace-based semantics, which allows us
to reason about the evolvement of licences. This will make it possible to design licences in such a way that no
unexpected patterns of use will emerge (safety) and secondly that desirable patterns of use can emerge (liveness).
Secondly we will implement the language, using an existing DRM platform [4]. Thirdly, we plan to study in
detail relevant legal, regulatory and business cases to ensure that the language is convenient to use.

Acknowledgement
We like to thank Prof. Wim Jonker (Philips Research) and Ernst-Jan Goedvolk (Telematica Institute) for their
valuable help on this paper. This work was partially supported by the Telematica Institute.

10

References
[1] K. R. Apt. From Logic Programming to Prolog. International Series in Computer Science. Prentice Hall,

1997.

[2] J-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma and the chemical reaction model: Fifteen years after.
In C. Calude, G. Paun, G. Rozenberg, and A. Salomaa, editors, Workshop on Multiset Processing (WMP),
volume 2235 of Lecture Notes in Computer Science, pages 17–44. Springer-Verlag, Berlin, August 2001.

[3] M. R. V. Chaudron and E. D. de Jong. Towards a compositional method for coordinating gamma programs.
In Coordination Languages and Models, First International Conference (COORDINATION ’96), pages
107–123. Lecture Notes in Computer Science 1061, Springer-Verlag, April 1996.

[4] C. N. Chong, R. van Buuren, P. H. Hartel, and G. Kleinhuis. Security attributes based digital rights man-
agement. In F. Boavida, E. Monteiro, and J. Orvalho, editors, Joint Int. Workshop on Interactive Distributed
Multimedia Systems / Protocols for Multimedia Systems (IDMS/PROMS), volume LNCS 2515, pages 339–
352, Coimbra, Portugal, Nov 2002. Springer-Verlag, Berlin.

[5] C. Gunter, S. Weeks, and A. Wright. Models and languages for digital rights. In Proceedings of the 34th
Annual Hawaii International Conference on System Sciences (HICSS-34), pages 4034–4038, Maui, Hawaii,
United States, January 2001. IEEE Computer Society Press.

[6] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press, 1992. ISBN:
0262071436.

[7] H. Guo. Digital rights management (DRM) using XrML. In T-110.501 Seminar on Network Security 2001,
page Poster paper 4, 2001. http://www.tml.hut.fi/Studies/T-110.501/2001/papers/.

[8] R. Iannella. Open digital rights management. In World Wide Web Consortium (W3C) DRM Workshop, page
Position paper 23, January 2001. http://www.w3.org/2000/12/drm-ws/pp/.

[9] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation – Artificial Intelligence. Springer-
Verlag, Berlin, 1987. Second edition.

[10] D. K. Mulligan, A. Burstein, and J. Erikson. Supporting limits on copyright exclusivity in a rights expression
language standard. Comments and requirements, Samuelson Law, Technology & Public Policy Clinic and
Clinic and the Electronic Privacy Information Center, Boalt Hall, School of Law, Berkeley CA 94720-7200,
USA, August 2002.

[11] R. Pucella and V. Weissman. A logic for reasoning about digital rights. In IEEE Proceedings of the Computer
Security Foundations Workshop, pages 282–294, Cape Breton, Nova Scotia, Canada, June 2002. IEEE
Computer Society Press.

[12] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory. The british nationality
act as a logic program. Communications ACM, 29(5):370–386, May 1986.

[13] S.A.F.A. van den Heuvel, W. Jonker, F.L.A.J. Kamperman, and P.J. Lenoir. Secure content management in
authorised domains. In The World’s Electronic Media Event IBC 2002, Sept. 13-17, Amsterdam RAI, The
Netherlands, pages 467–474, September 2002.

11

Appendix
In this section, we compare our system to that of Pucella et al. [11], by showing how a central example of [11]
can be rendered in LicenseScript.

Pucella et al.[11] consider the scenario of an owner of an online journal requiring a fee to be paid before
each access. This scenario is similar to the pay-per-use operation that we have shown in section 3.2, with a slight
dissimilarity: the users must pay before even activates the application to read the digital journal (our payment is
activated when the user activates the application).

Pucella et al.’s license is written as follows:

l = ((pay[fee](⊥)∗render[journal, d])∪ ⊥)∗ (2)

where d is the device that the user uses to access the journal; ⊥ represents the null or ”do nothing” action;
pay[fee] is the action of paying amount fee; render[journal, d] is the action of accessing the journal using the
device d (Refer to Reference [11] for more details on their logic).

Notice that the notations we apply in the following examples refer to section 3.2. We can express the similar
license by using the LicenseScript language:

lic(journal, ∆, {wallet≡ m, paid ≡ false, rate≡ n, provider≡ cert}) (3)

To express the pay and render operation, we build the license clauses, ∆ as follows:

dopay(B, B′) : − get value(B, paid, Paid), get value(B, wallet, Balance),

get value(B, rate, Rate), Paid = false, Balance ≥ Rate,

get value(B, provider, Provider), transfers(Provider, Rate),

N is Balance− Rate, set value(B, wallet, N, B′),

set value(B, paid, true, B′).

canrender(B, B′) : − get value(B, paid, Paid), Paid = true,

set value(B, paid, false, B′). (4)

Beware that after the render operation (shown in Clause 4), the binding Paid is reset to false. Thereby, the
user needs to make the payment again if she likes to access the journal again.

Finally, our rules for both of the operations above can be built as follows:

pay(journal) : lic(journal, ∆, B) → lic(journal, ∆, B ′)

⇐ ∆ ` dopay(B, B′) (5)

render(journal) : lic(journal, ∆, B → lic(journal, ∆, B ′)

⇐ ∆ ` canrender(B, B′) (6)

12

	VirtualGoodsReviewed.pdf
	Reviewed Papers
	
	Virtual
	Page

	Session 1: Watermarking for Virtual Goods
	A unified digital watermarking interface for eCommerce scenarios
	Image Watermarking for Semi-fingerprinting
	Watermarking of Analog and Compressed Video
	Session 2: Contracts for Virtual Goods
	An Application Programming Interface for the Electronic Transmission of Prescriptions
	Towards a Conceptual Framework for Digital Contract Composition and Fulfilment
	Electronic Contracting in cross-media environment
	http://virtualgoods.tu-ilmenau.de/2003/econtractingmedia.pdf
	Session 3: The Value of Virtual Goods
	A decentralized, probabilistic money system for P2P network communities
	Herwig Unger, Thomas Böhme
	http://virtualgoods.tu-ilmenau.de/2003/money.pdf
	Incentive Management for Virtual Goods – About Co
	Patrick Aichroth, Jens Hasselbach
	http://virtualgoods.tu-ilmenau.de/2003/incentive_management.pdf
	Increasing Consumer Value Through Technology for Virtual Music
	Stephan Baumann, Oliver Hummel
	http://virtualgoods.tu-ilmenau.de/2003/consumervalue.pdf
	Session 4: Digital Protection and Digital Rights for Virtual Goods
	Digital Battery – A Portable System to Gather Sta
	Timothy Budd
	http://virtualgoods.tu-ilmenau.de/2003/DigitalBattery.pdf
	LicenseScript: A Novel Digital Rights Language
	Cheun Ngen Chong, Ricardo Corin, Sandro Etalle, Pieter Hartel, Yee Wei Law
	http://virtualgoods.tu-ilmenau.de/2003/licensescript.pdf
	The Benefits and Challenges of Providing Content Protection in Peer-to-Peer Systems
	Paul Judge, Mostafa Ammar
	http://virtualgoods.tu-ilmenau.de/2003/BenefitsAndChallengesOfP2PContentProtection.pdf

